Prompt Engineering para Desarrolladores

Utiliza el poder de los LLMs como parte de tus Aplicaciones

Ahora que ya cuentas con tu LLM en Local, como explicamos en el artículo “Instala un LLM en Local”, podemos encenderlo en modo Servidor y comenzar a jugar con él desde nuestro código python.

En este artículo usaremos una Jupyter Notebook que puedes ver y descargar desde GitHub y realizar las actividades de Prompt Engineering.

Vamos a comenzar explicando los conceptos más importantes a la hora de pedir tareas a un Gran Modelo del Lenguaje y veremos como iterar sobre diversos casos de uso para mejorar el resultado final. Por último plantearemos el código para crear un Chatbot que guíe al cliente en sus compras en un ecommerce.

Introducción

El término Prompt Engineer surgió cuando los primeros Grandes Modelos de Lenguaje cómo (GPT-2 en 2019, GPT-3 en 2020) comenzaban a aparecer y encerrar en su interior los misterios del lenguaje humano. Entonces hacer prompt Engineer trataba de “encontrar de forma artística” la mejor forma de obtener buenas respuestas de estos modelos. De hecho, la técnica muchas veces consistía en hackear al modelo, descubrir vulnerabilidades y fortalezas. De las diversas y a veces aleatorias fórmulas utilizadas por los usuarios de la comunidad, el Prompt Engineer gana fuerza como una tarea en sí misma (y no como un complemento) en donde el saber cómo realizar la petición al modelo tenía salidas precisas y concretas.

Los actuales grandes modelos (de 2024) tienen “billones” de parámetros y si bien tenemos algo más de comprensión sobre su comportamiento -sabemos que son modelos estadísticos- lo cierto es que aún no tenemos un mapa completo de cómo se comportan. Esto da lugar a que el Prompt Engineering (“cómo consultamos el LLM”) siga siendo una parte importante de nuestra tarea como científicos de datos o Ingenieros de datos.

Lo cierto es que ahora un LLM puede ser una pieza más del sistema, por lo que debemos poder fiarnos de que tendremos la respuesta apropiada (y en el formato buscado).

Modelo Fundacional vs Modelo de Instrucciones

Hagamos un mini repaso antes de empezar; hay dos tipos de LLMS, los “LLM Base” (fundacional) y los “LLM tuneados con Instrucciones” (en inglés Instruction Tuned LLM). Los primeros entrenados únicamente para predecir la siguiente palabra. Los tuneados en Instrucciones están entrenados sobre los Base; pero pueden seguir indicaciones, eso los vuelve mucho más útiles para poder llevar adelante una conversación. Además, al agregar el RLHF, es decir, un paso adicional luego de Tunearlos en donde mediante el feedback de personas humanas se mejora la redacción de respuestas penalizando o premiando al modelo. El RLHF también funciona como una capa de censura para ciertas palabras o frases no deseadas.

Estas LLMs que siguen instrucciones son ajustadas con el objetivo de ser “utiles, honestas e inofensivas” (en inglés Helpful, Honest, Harmless) intentan ser lo menos tóxicas posibles. De ahí la importancia de la limpieza del dataset inicial con el que fueron entrenadas las “LLM base”.

Ten esto en cuenta cuando descargues o elijas qué LLM utilizar. Para la mayoría de aplicaciones deberás seleccionar una version de LLM que sea de Instrucciones y no base. Por ejemplo para modelos Llama 2 encontrarás versiones “raw” o base, pero generalmente queremos utilizar las tuneadas en instrucciones. A veces se les denomina como “versión chat”.

Las dos reglas para lograr buenos Prompts

¿Qué es lo que tienes que hacer para lograr buenas respuestas con tu LLM?

Veamos los dos principios básicos:

Seguir Leyendo

Instalar un Modelo de Lenguaje en tu ordenador

Puedes instalar Llama 2, Claude, Mistral, Falcon, StableLM ó cualquier otro LLM en tu computadora para ejecutar proyectos en Local. Tu propio ChatGPT privado. En este artículo te explicaremos cómo hacerlo paso a paso.

En pocos minutos podrás tener instalado un Gran Modelo de Lenguaje en tu ordenador y podrás chatear con él, pedir que escriba tus correos, sugerir ideas, consultas legales y hasta aprovecharlo como un servidor en local y que provea de valor a tus aplicaciones. Todo gracias al software libre LM Studio.

Los grandes modelos de Lenguaje (LLMs) se convirtieron en un asistente indispensable para trabajar, para resolver dudas, para programar y hasta para reemplazar al buscador. Hay quienes lo utilizan a diario y lo cuentan como una herramienta indispensable como un lápiz, el Excel o StackOverflow.

Seguramente conozcas ChatGPT que se popularizó a finales de 2022 y tomó gran relevancia con sus modelo GPT4 ya en 2023. A partir de ese momento surgieron muchos otros modelos GPT como Llama de Meta, Claude, Mistral, Gemini de Google ó Falcon. Muchos de ellos Open Source y/o con licencias de uso comercial.

Algunos también ofrecen la posibilidad de uso en la nube para probarlos, pero también tenemos la opción de descargarlos desde HuggingFace y correrlos en local.

Ventajas de tener un LLM en local

¿Por qué querríamos ejecutar un LLM en local?

Seguir Leyendo

Generación de Texto en Español con GPT-2

Crea tu propio bot-influencer, basado en Ibai Llanos, en Python ¿Qué puede salir mal?

Crearemos nuestra propia IA de generación de texto basada en los diálogos y entrevistas de Ibai Llanos publicados en Youtube. Usaremos un modelo pre-entrenado GPT-2 en castellano disponible desde HuggingFace y haremos el fine-tuning con Pytorch para que aprenda el estilo de escritura deseado.

En este artículo comentaremos brevemente el modelo GPT-2 y crearemos un entorno en Python desde donde poder entrenar y generar texto!

¿Qué son los modelos GPT?

GPT significa “Generative Pre-Training” y es un modelo de Machine Learning creado por OpenAI para la generación de texto. El modelo de Procesamiento del Lenguaje Natural, es un caso particular de Transformers. GPT propone el pre-entrenamiento de un enorme corpus de texto para luego -opcionalmente- realizar el fine-tuning.

Seguir Leyendo
Aprende Transformers en Español

¿Cómo funcionan los Transformers? en Español

Imagen creada por el Autor utilizando el modelo de text-to-img StableDiffusion

Los Transformers aparecieron como una novedosa arquitectura de Deep Learning para NLP en un paper de 2017 “Attention is all you need” que presentaba unos ingeniosos métodos para poder realizar traducción de un idioma a otro superando a las redes seq-2-seq LSTM de aquel entonces. Pero lo que no sabíamos es que este “nuevo modelo” podría ser utilizado en más campos como el de Visión Artificial, Redes Generativas, Aprendizaje por Refuerzo, Time Series y en todos ellos batir todos los records! Su impacto es tan grande que se han transformado en la nueva piedra angular del Machine Learning.

En este artículo repasaremos las piezas fundamentales que componen al Transformer y cómo una a una colaboran para conseguir tan buenos resultados. Los Transformers y su mecanismo de atención posibilitaron la aparición de los grandes modelos generadores de texto GPT2, GPT3 y BERT que ahora podían ser entrenados aprovechando el paralelismo que se alcanza mediante el uso de GPUs.

Agenda

  • ¿Qué son los transformers?
  • Arquitectura
    • General
    • Embeddings
    • Positional Encoding
    • Encoder
      • Mecanismo de Atención
      • Add & Normalisation Layer
      • Feedforward Network
    • Decoder
    • Salida del Modelo
  • Aplicaciones de los Transformers
    • BERT
    • GPT-2
    • GPT-3
  • Resumen

¿Qué son los transformers en Machine Learning?

En el paper original de 2017 “Attention is all you need” aparece el diagrama con la novedosa arquitectura del Transformer, que todos deberíamos tatuarnos en un brazo. Esta arquitectura surge como una solución a problemas de aprendizaje supervisado en Procesamiento del Lenguaje Natural, obteniendo grandes ventajas frente a los modelos utilizados en ese entonces. El transformer permitía realizar la traducción de un idioma a otro con la gran ventaja de poder entrenar al modelo en paralelo; lo que aumentaba drásticamente la velocidad y reducción del coste; y utilizando como potenciador el mecanismo de atención, que hasta ese momento no había sido explotado del todo. Veremos que en su arquitectura utiliza diversas piezas ya existentes pero que no estaban combinadas de esta manera. Además el nombre de “Todo lo que necesitas es Atención” es a la vez un tributo a los Beatles y una “bofetada” a los modelos NLP centrados en Redes Recurrentes que en ese entonces estaban intentando combinarlos con atención. De esta sutil forma les estaban diciendo… “tiren esas redes recurrentes a la basura”, porque el mecanismo de atención NO es un complemento… es EL protagonista!

All you need is Love Attention

The Beatles
Seguir Leyendo

Crea imágenes increíbles con Inteligencia Artificial en tu ordenador

El modelo de Machine Learning llamado Stable Diffusion es Open Source y permite generar cualquier imagen a partir de un texto, por más loca que sea, desde el sofá de tu casa!

Estamos viviendo unos días realmente emocionantes en el campo de la inteligencia artificial, en apenas meses, hemos pasado de tener modelos enormes y de pago en manos de unas pocas corporaciones a poder desplegar un modelo en tu propio ordenador y lograr los mismos -increíbles- resultados de manera gratuita. Es decir, ahora mismo, está al alcance de prácticamente cualquier persona la capacidad de utilizar esta potentísima herramienta y crear imágenes en segundos (ó minutos) y a coste cero.

En este artículo les comentaré qué es Stable Diffusion y por qué es un hito en la historia de la Inteligencia Artificial, veremos cómo funciona y tienes la oportunidad de probarlo en la nube o de instalarlo en tu propio ordenador sea Windows, Linux ó Mac, con o sin placa GPU.

Reseña de los acontecimientos

  • 2015: Paper que propone los Diffusion Models.
  • 2018 -2019 Text to Image Synthesis – usando GANS se generan imágenes de 64×64 pixels, utiliza muchos recursos y baja calidad de resultados.
  • Enero 2021: Open AI anuncia Dall-E, genera imágenes interesantes, pequeñas, baja resolución, lentas.
  • Febrero 2021: CLIP de Open AI (Contrastive Language-Image Pretraining), un codificador dual de lenguaje-imagen muy potente.
  • Julio 2021: Image Text Contrastive Learning Mejora sobre las Gans “image-text-label” space.
  • Marzo 2022: GLIDE: esta red es una mejora sobre Dall-E, tambien de openAI pero usando DIFFUSION model.
  • Abril 2022: Dall-E 2 de Open AI, un modelo muy bueno de generación de imágenes. Código cerrado, acceso por pedido y de pago.
  • Mayo 2022: Imagen de Google.
  • Agosto de 2022: Lanzamiento de Stable Diffusion 1.4 de Stability AI al público. Open Source, de bajos recursos, para poder ejecutar en cualquier ordenador.

¿Qué es Stable Diffusion?

Stable Diffusion es el nombre de un nuevo modelo de Machine Learning de Texto-a-Imagen creado por Stability Ai, Comp Vis y LAION. Entrenado con +5 mil millones de imágenes del dataset Laion-5B en tamaño 512 por 512 pixeles. Su código fue liberado al público el 22 de Agosto de 2022 y en un archivo de 4GB con los pesos entrenados de una red neuronal que podemos descargar desde HuggingFace, tienes el poder de crear imágenes muy diversas a partir de una entrada de texto.

Stable Diffusion es también una gran revolución en nuestra sociedad porque trae consigo diversas polémicas; al ofrecer esta herramienta a un amplio público, permite generar imágenes de fantasía de paisajes, personas, productos… ¿cómo afecta esto a los derechos de autor? Qué pasa con las imágenes inadecuadas u ofensivas? Qué pasa con el sesgo de género? Puede suplantar a un diseñador gráfico? Hay un abanico enorme de incógnitas sobre cómo será utilizada esta herramienta y la disrupción que supone. A mí personalmente me impresiona por el progreso tecnológico, por lo potente que es, los magnificos resultados que puede alcanzar y todo lo positivo que puede acarrear.

¿Por qué tanto revuelo? ¿Es como una gran Base de datos de imágenes? – ¡No!

Es cierto que fue entrenada con más de 5 mil millones de imágenes. Entonces podemos pensar: “Si el modelo vio 100.000 imágenes de caballos, aprenderá a dibujar caballos. Si vio 100.000 imágenes de la luna, sabrá pintar la luna. Y si aprendió de miles de imágenes de astronautas, sabrá pintar astronautas“. Pero si le pedimos que pinte “un astronauta a caballo en la luna” ¿qué pasa? La respuesta es que el modelo que jamás había visto una imagen así, es capaz de generar cientos de variantes de imágenes que cumplen con lo solicitado… esto ya empieza a ser increíble. Podemos pensar: “Bueno, estará haciendo un collage, usando un caballo que ya vio, un astronauta (que ya vió) y la luna y hacer una composición“. Y no; no es eso lo que hace, ahí se vuelve interesante: el modelo de ML parte de un “lienzo en blanco” (en realidad es una imagen llena de ruido) y a partir de ellos empieza a generar la imagen, iterando y refinando su objetivo, pero trabajando a nivel de pixel (por lo cual no está haciendo copy-paste). Si creyéramos que es una gran base de datos, les aseguro que no caben las 5.500.000.000 de imágenes en 4 Gygabytes -que son los pesos del modelo de la red- pues estaría almacenando cada imagen (de 512x512px) en menos de 1 Byte, algo imposible.

¿Cómo funciona Stable Diffusion?

Veamos cómo funciona Stable Diffusion!

Seguir Leyendo

Sets de Entrenamiento, Test y Validación

Vamos a comentar las diferencias entre los conjuntos de Entrenamiento, Validación y Test utilizados en Machine Learning ya que suele haber bastante confusión en para qué es cada uno y cómo utilizarlos adecuadamente.

Intentaré hacerlo mediante un ejemplo práctico por eso de ser didácticos 🙂

Además veremos que tenemos distintas técnicas de hacer la validación del modelo y aplicarlas con Scikit Learn en Python.

Un nuevo Mundo

Al principio de los tiempos, sólo tenemos un conjunto Pangea que contiene todo nuestro dato disponible. Digamos que tenemos un archivo csv con 10.000 registros.

Para entrenar nuestro modelo de Machine Learning y poder saber si está funcionando bien, alguien dijo: Separemos el conjunto de datos inicial en 2: conjunto de entrenamiento (train) y conjunto de Pruebas (test). Por lo general se divide haciendo “80-20”. Y se toman muestras aleatorias -no en secuencia, si no, mezclado.

Para hacer el ejemplo sencillo, supongamos que queremos hacer clasificación usando un algoritmo supervisado, con lo cual tendremos:

  • X_train con 8.000 registros para entrenar
  • y_train con las “etiquetas” de los resultados esperados de X_train
  • X_test con 2.000 registros para test
  • y_test con las “etiquetas” de los resultados de X_test

Hágase el conjunto de Test

Lo interesante y a destacar de esto es que una vez los separamos en 8.000 registros para entrenar y 2.000 para probar, usaremos sólo esos 8.000 registros para alimentar al modelo al entrenarlo haciendo:

modelo.fit(X_train, y_train)

Luego de entrenar nuestro modelo y habiendo decidido como métrica de negocio el Accuracy (el % de aciertos) obtenemos un 75% sobre el set de entrenamiento (y asumimos que ese porcentaje nos sirve para nuestro objetivo de negocio).

Los 2.000 registros que separamos en X_test aún nunca han pasado por el modelo de ML. ¿Se entiende esto? porque eso es muy importante!!! Cuando usemos el set de test, haremos:

modelo.predict(X_test)

Como verás, no estamos usando fit()!!! sólo pasaremos los datos sin la columna de “y_test” que contiene las etiquetas. Además remarco que estamos haciendo predicción; me refiero a que el modelo NO se está entrenando ni <<incorporando conocimiento>>. El modelo se limita a “ver la entrada y escupir una salida”.

Cuando hacemos el predict() sobre el conjunto de test y obtenemos las predicciones, las podemos comprobar y contrastar con los valores reales almacenados en y_test y hallar así la métrica que usamos. Los resultados que nos puede dar serán:

  1. Si el accuracy en Test es <<cercano>> al de Entrenamiento (dijimos 75%) por ejemplo en este caso si estuviera entre 65 ú 85% quiere decir que nuestro modelo entrenado está generalizando bien y lo podemos dar por bueno (siempre y cuando estemos conformes con las métricas obtenidas).
  2. Si el Accuracy en Test es muy distinto al de Entrenamiento tanto por encima como por debajo, nos da un 99% ó un 25% (lejano al 75%) entonces es un indicador de que nuestro modelo no ha entrenado bien y no nos sirve. De hecho este podría ser un indicador de Overfitting.

Para evaluar mejor el segundo caso, es donde aparece el “conjunto de Validación”.

Al Séptimo día Dios creo el Cross-Validation

Seguir Leyendo